Hauv kev ua lej, Wronskian (lossis Wrońskian) yog tus txiav txim siab qhia los ntawm Józef Hoene-Wroński (1812) thiab npe los ntawm Thomas Muir (1882, Tshooj XVIII). Nws yog siv hauv kev kawm ntawm qhov sib npaug sib txawv, qhov twg nws tuaj yeem ua rau qee zaum qhia kev ywj pheej hauv cov txheej txheem daws teeb meem.
Yuav ua li cas yog Wronskian muaj nuj nqi?
if rau kev ua haujlwm f thiab g, Wronskian W(f, g)(x0) yog nonzero rau qee x0 hauv [a, b] ces f thiab g yog linearly ywj siab ntawm [a, b]. Yog tias f thiab g yog linearly dependent ces Wronskian yog xoom rau tag nrho x0 hauv [a, b].
txhais li cas yog Wronskian tsis yog xoom?
Qhov tseeb tias Wronskian tsis yog xoom ntawm x0 txhais tau tias tias lub square matrix ntawm sab laug tsis yog lus, li no. qhov kev sib npaug no tsuas muaj qhov kev daws teeb meem c1=c2=0, yog li f thiab g yog ywj siab.
Wronskian xam li cas?
Tus Wronskian yog muab los ntawm qhov kev txiav txim hauv qab no: W(f1, f2, f3)(x)(x)=|f1(x)f2(x)f3(x)f′1(x) f′2(x)f′3(x)f′1(x)f′′2(x)f′′3(x)|.
Tus nqi ntawm Wronskian yog dab tsi?
Yog li txij li Wronskian yog sib npaug rau xoom, qhov no txhais tau tias cov txheej txheem kev daws teeb meem no peb hu ua f (x) f (x) f (x) thiab g (x) g(x) g(x) tsis tsim ib qho kev daws teeb meem.